
THE SOFTWARE QUALITY GUIDE.

www.servicetrace.de 1/3

White paper | Easy automation

Software testing, test automation.

Why test software?

 Risk of software errors

 Failure and bug fixing

 Test outlay versus error costs

Why automate software tests?

 Agile software development

 Agility is a trend

 Software testing: an expensive bottleneck?

 Automation for faster, cheaper and better testing

 Test automation: Invest and RoI

Test stages at a glance

Eight steps to the test automation framework

 1) The basics: this is where automation pays off

 2) Quick win: automate regression tests

 3) Expand: identify more test cases for automation

 4) Shift-left: test early, test a lot

 5) Shift-right: test the customer’s viewpoint before & after going live

 6) GUI tests: tool selection criteria

 7) Test automation & teamwork: new tasks and roles

 8) DevOps: continuous delivery, deployment & operation

From the field: customer stories about test automation

About Servicetrace

2

2

3

3

4

4

6

6

7

7

8

9

9

9

9

9

10

11

13

13

14

14

www.servicetrace.com 1/14

e-book | The Software Quality Guide

www.servicetrace.de 2/3

White paper | Easy automation

Risk of software bugs
Edzard Höfig, university professor in Berlin, has a YouTube channel with suggested

online lectures about software development. In the webcast called Introduction to

software testing, he explains the importance of software tests in thought-provoking

fashion, telling the story of the maiden flight of the Ariane 5 launch – a costly

prestige project of the ESA that was supposed to secure the European space travel

organization’s leading position and attract umpteen investors.

Technologically, Ariane 5 was a complete new build and accelerated must faster than

Ariane 4. The software in Ariane 5, however, was not a new development. Instead, it

was based on the whole code of the predecessor version for Ariane 4. A code snippet

in the launch system, which had resolved a launch-related problem in Ariane 4

and was no longer relevant to the launch capability of Ariane 5, failed to correctly

interpret the high acceleration data and sent false information to the control logic.

The rocket veered way off course, and this tripped the self-destruction mechanism.

2.08 billion dollars
Software error costs in the USA in 2020

Some 1.56 billion dollars of this amount were incurred in productive

operation. The remainder is accounted for by software that was not put

into service due to poor quality.

Source: The Cost of Poor Software Quality in the US: A 2020s Report

WHY TEST SOFTWARE?

“We have as many testers as we have developers. When we do a new release of Windows, over half the budget goes into quality”, Bill Gates tells InformationWeek in an

interview in 2002. When CEOs, project managers and IT professionals have to balance tight budgets, software testing tumbles down the agenda and is soon shelved with

excuses like “are the test costs reasonably proportionate to the potential effects of any software errors? Is it worth the cost?” The tendency is to plow the entire software

development budget into programming – quality assurance doesn’t get new software into the customers' hands.

On June 4, 1996, some 370,000,000 US dollars’ worth of material went up in flames

with the (unmanned) Ariane. The program code snippet that started the chain

reaction that caused the rocket to explode would go down in history as one of the

most expensive software errors ever.

The scenario described on a large scale here applies to smaller-dimensioned software

projects as well. The message is clear: before new or altered systems are put into

service, they must have successfully cleared an adequate test phase. Organizations

that forgo software tests make only short-term savings and risk a great deal.

The cost of substandard software often outweighs the cost of failure prevention

that would have been incurred by quality assurance. The “rule of 10” from industrial

manufacturing, according to which the error costs of a product increase tenfold

with every project phase, applies for the cost trend in the software’s life cycle.

The rule of 10 for error

costs in software

development

0.10

Analysis
C

os
ts

 p
er

 e
rr

or
Specification Design Implementation Test Usage

1

10

100

www.servicetrace.com 2/14

e-book | The Software Quality Guide

https://youtu.be/I1ftRGHh45U
https://youtu.be/I1ftRGHh45U
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.informationweek.com/qanda-bill-gates-on-trustworthy-computing/d/d-id/1015083?piddl_msgorder=asc

What is software quality?

The customer’s viewpoint offers a pragmatic definition:

 • the software has to fulfill the customer’s requirements and support

 workflows in the best way possible

 • the software has to run without errors and cause no disruptions within

 the operation.

This gives rise to the following priorities for the development of high-

quality software:

 • focus on clearly and fully defined requirements

 • focus on debugging before going live

The measures below are derived from this:

 • close and continuous liaison between customer, product owner

 and developers

 • integrate tests into the development process

At maximum test costs of 300,000 euros and maximum assumed error costs of

1,000,000 euros, the example calculates a value of between 210,000 and 240,000

euros to be invested in quality assurance.

Failure and bug fixing
The costs of software errors have both direct and indirect effects. Costs for localizing

the cause of the error (debugging) and for rectifying the error (bug fixing) are

incurred directly. Well-paid software engineers spend, on average, half their working

time on unproductive bug fixing procedures they detest – time they could invest in

creatively refining the software.

Indirect and incalculably high costs stem from the failures that would occur if the

software errors were to make their way into production. These costs include the

failure of productive processes, lost customers, waning reputation and contractual

penalties.

But it’s not just the economic loss that unhinges customers from the competition in

the medium-term, the missed opportunity to use high software quality as a unique

selling point wreaks even more havoc.

Test expenditure versus error costs
An economically viable investment in quality assurance takes the test effort and

error cost ratio into account. The graphic shows that as test expenditure increases,

the risk of potential error costs drops. From a certain point, the test costs top the

possible error costs. The values for your optimum quality budget settle at the low

point of the parabola above this intersection.

Make software quality a permanent feature of your digital strategy and

devote more of your development budget to software tests. Quality

prevails and pays off:

• you position yourself among numerous competing providers as

 a producer of outstanding quality goods

• you establish your permanent position on the market as a reliable digital

 manufacturer with top quality, long-lasting software products

Optimum expenditure for software QA
Test costs

QA budgetTest effort

Risk of error

Error costs

www.servicetrace.com 3/14

e-book | The Software Quality Guide

WHY AUTOMATE SOFTWARE TESTS?

The accelerated dynamic of global market development and the growing demands set by consumers are generating high innovation pressure, especially in the fast moving

digital sector. To keep pace with the competition, companies have to put new software products in operation more frequently and at a faster speed than the competition.

2 or 3 releases per year are no longer enough. Especially if the software itself is destined to become the business model, updates at shorter – quarterly or even weekly –

intervals are required. Digital giants like Google, Facebook or TikTok make several releases a day.

Traditional software development: failure on schedule?

Agile software development
The trend towards increasingly quick release cycles with more and more frequent

updates is aligning to the requirements of the globalized and digitalized 21st

Century, an era when consumers, providers and products interact spontaneously,

elusively and unpredictably. Long-term planning no longer suffices in our cut-and-

thrust world: this first opened the door in software development in the early 2000's

to agile frameworks and methods such as Scrum, Kanban and Lean Management.

Agile development (lat. agilis: “lithe, swift) is the polar opposite of a linear develo-

pment process where all expectations of the software are specified together with

the purchaser at the start of the project, the software then being implemented over

several months of development with all new functions and features and released

with a big bang. This traditional software engineering approach often leads to

disappointing wayward developments.

Nowadays, software systems have to support such complex and dynamic business

environments that the demands on the product cannot be defined completely,

reliably and clearly at the outset. Meaning, requirements will change completely

or new ones will be added during the course of the project. If the software now

continues to be developed as planned “in the silo”, the result at the end is expensive

software headed for the trash can.

VUCA describes the altered framework conditions and

challenges for organizations in the digital age. Consumers no

longer tie themselves to brands for long periods. Instead, they

spontaneously swap to providers that offer products to suit their

fluctuating (volatile) requirements. Future market developments

and customer requirements are always uncertain: our complex
 and ambiguous world with globally and digitally networked economic

cycles and omnipresent multi-optionality is proving to be unpredictably

dynamic and leaves no room for planning reliability.

This heralds the end of linear thinking and linear strategies, paving the

way for agile methods.

To create the software that the customer will actually use, agile software development

according to the Scrum framework takes an iterative (=approaching the solution

step-by-step) and incremental (advancing step-by-step, building step-by-step)

course.

At project kick-off, the purchaser formulates the desired product features as “user

Scrum: to usable software in partial stages

www.servicetrace.com 4/14

e-book | The Software Quality Guide

stories”, which list and prioritize the product owners in the product backlog. The

developer team gradually implements the new functionalities in “sprints” lasting

one to four weeks. At the end of each sprint is a ready-to-use sub-product which the

customer validates again. After the “sprint reviews”, the demands on the software

can be adjusted in further talks between product owner and purchaser.

Daily SCRUM;

brief meeting of the project team

(identifying status, problems) - Presenter

- Caretaker

 (deadlines, resolution)

Burndown charts
Project tracking:

Achieved versus planned

Release X
Potentially shippable product

Release candidate

Introduction for stakeholders,

product owners in particular

Process

improvement

Representatives of the

customer or purchaser

The requirements to be

met in this sprint

(incl. validation criteria)

Product vision,

application cases,

requirements,

release plan

St
ar

t S
PR

IN
T

X If validation criteria are fulfilled

SCRUM master

Product Owner Sprint X

Sprint
review

Sprint
retrospective

Sprint
planning

Day-to-day work,
daily SCRUM

Product backlog

Sprint backlog

Thanks to the modularized development process, the rapid release cycles and the

continuous feedback loops with the purchaser, agile software development is able

to respond flexibly to volatile customer preferences, minimizing the risk of wayward

developments in meeting customer requirements.

www.servicetrace.com 5/14

e-book | The Software Quality Guide

Agility is a trend
Properly functioning software is more important than comprehensive

documentation, ongoing communication with the customer ranks above abstract

contract negotiations and responding to change counts for more than rigidly stick-

ing to a plan – the new principles for software development, the Agile Manifest 2001

formulated in revolutionary gestures, are now the gold standard for organizations

that want to scale up their innovation pace and stay close to the customer in the

process.

The figures in the info box shows two things:

• when introducing agile methods, most companies prioritize speed, closely followed

 by flexibility

• just on 60% still pay little attention to software quality

Why go agile?

Of 1,121 companies1 that rely on agile methods like Scrum and Kanban

71% want to accelerate software development

63% want to respond to (fluctuating) requirements more flexibly

47% want to improve their IT/business alignment strategy

42% want to raise the quality of their software

14th Annual State of Agile Report, 2020

1 Christopher Little, Jim Scheibmeir: When Dev goes agile, optimize operations’ testing capabilities with automation, Gartner Research 2018
2 Joachim Herschmann, Thomas Murphy, Jim Scheibmeir: 4 Essential Steps to Implement Test Automation, Gartner Research 2019

Software testing: an expensive bottleneck?
One reason for the reticence is the cost involved in quality assurance. On average,

a sophisticated test process accounts for around 30-50% of the total budget for a

software project.

Secondly, software testing is a time-consuming process. The all-important end-

to-end test, for example, which is designed to check whether the customer can

use the software system to successfully implement business-critical processes

such as concluding a contract or ordering products, can soon contain hundreds

of test cases involving thousands of sub-steps in the case of complex applications

in large integrated networks. The colossal amount of time invested in the design,

performance and evaluation of the tests thwarts agile teams and processes.

In Gartner’s 2018 Agile Survey, 44% of respondents identified working with
teams using traditional methods as one of their top-three challenges for
adopting agile development. Testing is a common constraint in this situation
due to its … reliance on manual efforts; as a result, quality is slow to achieve
and ineffective.1

When resources are scarce anyway and there is pressure to innovate, the budget is

often almost completely deflected from risk prevention to further development.

As the pace of delivery increases … manual testing can’t keep up and quickly
becomes a bottleneck. As a result, testing often gets sacrificed and quality
deteriorates …2.

The consequences of companies forgoing software tests because they pose a threat

to the pace of digital innovation is described in the Why test software? section.

Only good software quality prevails over the long term and improves the ability to

compete. Without tests, however, it’s not sustainable.

www.servicetrace.com 6/14

e-book | The Software Quality Guide

The cost of test automation drops with each release. This is because, once automated,

the tests can be easily reused for the next minor release. Then at the next major

release, only the new test cases need to be added. For manual tests, by contrast, the

cost replicates with each release and even increases as the application becomes

more complex.

Test automation: Invest and RoI
However, it would be naive to think of test automation as some immediately

profitable wizardry, created as if by magic. The conversion from manual to automatic

calls for an up-front investment which exceeds the cost of manual testing initially.

This involves:

• Conviction and commitment of the test team, company management, IT

management, purchasing

• Selectionof test stages and cases to be automated

• Comparison between and selection of automation tools

• Staff training

• Definition of (new) processes, roles and tasks within the test team

• Creation and testing of automated test cases

However, the more often you release software updates and the longer you continue

developing the software, the faster and better the initial outlay is returned.

Automation for faster, cheaper and better testing
Better to deliver refined quality or put substandard products in circulation quickly?

If manual procedures in the test process are automated, software project managers

are not required to make such a hard and fast choice between the quality of software

and the speed of innovation. With a sophisticated test automation strategy, quality

assurance can not only pick up the agile pace of the software development; the

automated software tests also raise product quality and cut the cost of testing.

More agility
• faster test implementation

• more frequent testing

Better quality
• increased test coverage

• standardized test execution

Falling costs
• fewer software errors

• lower costs for test

 implementation

Efficient use of resources
• liberates qualified and expert testers

 from time-consuming, tedious

 and error-prone routine tests

• test results swiftly reported to

 development on a regular basis

• faster bug fixing

 and further development

• low risk of errors being overlooked

• possibility of man-made

 errors ruled out

• lower error costs

• after return on investment, ongoing

 automation costs a fraction of the

 salary earned by a software tester

• frees up resources for creative and

 complex tasks (usability tests,

 exploratory tests) or re-qualifications

 (> test automation engineer)

Automated tests

Manual tests

Manual tests remaining

Release

Cost

www.servicetrace.com 7/14

e-book | The Software Quality Guide

Test stage Layer Goal Implementation Tools (e.g.)

Acceptance test

Acceptance by the
customer/purchaser

GUI Validation and acceptance of the
finished software system by the
purchaser

Customer,
professional user,
product owner

Manual tests

Cost high System integration test

Tests the interoperability
with other systems

GUI To test business processes for
error-free practicability with
cross-system E2E click trails

Tester Ranorex
Servicetrace:
Tricentis

Business
perspec-
tive

System test

Tests the fully integrated
system from the user’s
perspective

GUI To test the system/software for
completeness and functionality of
defined system requirements

Tester Ranorex
Servicetrace
Tricentis

Integration test

Tests the interaction
between at least two
Components

Interfaces/APIs To test the functionality of inte-
grated components. Incremental
procedure until all components are
integrated as a complete system

Developer, tester Citrus

Cost
low

Component test/
unit test

Tests single software
modules immediately after
implementation

Code To test the stability and function-
ality of fragmented and isolated
software units. Errors can be quick-
ly assigned to the relevant lines in
the code and rectified without a
problem

Developer JUnit
MSUnit
Pytest

System
perspec-
tive

TEST STAGES AT A GLANCE

This overview bundles the test stages that are essential to continuous quality

assurance in software development. Only when a build has successfully cleared a

test stage at a lower hierarchy will it be incorporated into the next test stage. Cost

and time increase as the test stages move up the scale from lower to higher.

Automated test runs are possible at all test stages up to the acceptance test by

the customer. A high degree of automation throughout the test process achieves

a) a time saving thanks to accelerated test throughput times and fast feedback to

development and b) a higher software quality thanks to increased test coverage.

www.servicetrace.com 8/14

e-book | The Software Quality Guide

8 STEPS TO THE TEST AUTOMATION
STEPS FRAMEWORK

The last section describes best practices for a perfectly efficient and profitable

introduction of a test automation procedure.

1) Basics: this is where automation pays off
Use the 4 factors below to verify which tests you should be automating:

• Application life cycle: automate tests for long-life applications that are expected

to issue many more releases.

• Test frequency: automate the tests that are required at each release.

• Stability: as long as a defined feature continues to be developed and is subjected

to frequent modifications, testing should be manual since automation in

this case would involve a high amount of maintenance. Automate if the

implementation of the feature is stable.

• Business risk: prioritize the test cases using a risk analysis and automate tests for

those features which would generate the most negative impacts on business

processes should they fail.

2) Quick win: automate regression tests
Regression tests are run at every test stage. They check whether a test can be

successfully repeated after a change to the software or in the software system, or

whether such change has brought about undesirable side effects.

The frequency of execution, the repetitive and monotonous nature of the tests

and the simple reuse of the test cases make regression tests a top candidate for

automation with a high savings potential.

3) Expand: identify more test cases for automation
The following test types are also suitable for automation due to their frequency and

repetitive nature:

• Smoke tests ensure the basic operability of the application (e.g. start application,

login, selected key functionalities) and should be carried out before all other test

activities

• Data-driven tests pass through the same test case with various data sets (e.g.

user name, customer number, email, payment method, etc.)

• Cross-browser tests pass through the same test case in various standard

browsers (Chrome, Firefox, Edge, Safari)

• Non-functional performance and load tests measure the reaction time of the

software with single and parallel access

4) Shift-left: test early, test a lot
The test automation pyramid by Mike Cohn offers valuable orientation for

recommended automation outlay according to test stages.

Test strategies: ice cream cone pattern versus test automation pyramid

www.servicetrace.com 9/14

e-book | The Software Quality Guide

The common automation practice in software projects is the top-down approach

of the ice cream cone pattern: the biggest proportion of the automation budget is

invested in GUI tests, the aim being to chase down software errors at the end of the

development phase. This method lacks promise and is unprofitable:

• creating and managing the automated GUI tests is relatively expensive and

time-consuming

• An error at system level does not provide any proof of which points in the code

are affected. Finding and fixing the cause is a tedious and long-winded process

• The further down the development process a bug is found, the more it costs to

fix

A bottom-up approach or a pyramid-shaped weighting of the automation outlay

along the test stages offers more promise. This approach is based on the premise

The cost of bug fixing

increases with every

progressive stage

of the development

process. Regular

and early testing

significantly reduces

these costs.

that software quality should not be “tested” only at the end of the development

process at system level, but rather has to be integrated into the product at the

outset. This paradigm leads to the “shift left” in software quality assurance: the tests

do not begin only at the end of the development phase, instead they run parallel to

and support the development process as a whole. With Test Driven Development

(TDD), the tests are written even before the software module to be tested. This

compels programmers to consistently develop using the cleanest possible code for

the required functionalities and/or for the testability of the test item.

The broad basis of the test automation pyramid therefore accounts for the highest

number of unit or module tests. The advantages:

• small outlay for creating and managing the tests, fast runtime

• module tests are run in the development environment itself rather than

in an expensive test environment, since no dependencies on other system

components are tested

• the test itemsare designed with fine-grained modularity and concern a

dedicated section in the code, allowing the test results to lead directly to the

cause of the error

• module tests reliably validate the functionality and robustness of the code for

acceptance into the next test stage

The next biggest volume of tests or automation outlay are the integration tests that

validate the interoperability of the individual modules. Only those items that pass

the automated integration tests are implemented in the software system.

Afterwards, a small number of selected automated GUI tests can test the most

important business-critical E2E click trails for practicability or regression whereas

only exploratory, complex GUI tests are run on the new system manually.

5) Shift-right: test the customer’s viewpoint before and after going live
According to the test pyramid, E2E tests from the customer’s viewpoint form the

smallest unit of tests to be automated. They are less suited to debugging and

bug fixing because one failed function can potentially concern thousands of code

sections. Rather, as acceptance tests they are used to validate the practicability

of critical business processes from a customer’s viewpoint, i.e. demonstrate the

practical suitability of the software.

Requirements /
architecture

0x

5x

10x

15x

20x

25x

30x

Coding integration /
Component testing

System / acceptance
testing

Production /
post-release

www.servicetrace.com 10/14

e-book | The Software Quality Guide

testers or professional users from the business world to create automated E2E test

cases single-handedly. Business users understand only too well the requirements

or the business processes in their department to be tested and hence contribute all

professional qualifications to creating appropriate and adequate test cases for E2E

acceptance tests.

Indeed, capture & replay approaches are ostensibly more convenient and faster

than the drag & drop procedure for creating tests in a graphic editor. The drawback,

however, is the monolithic and inflexible nature of the test cases recorded. Each

time the GUI is changed, all the test cases have to re-recorded, i.e. completely run

again by a manual process.

Create GUI tests without programming using the no-code solution, e.g. with

the Workflow Studio from Servicetrace Workflow Studio.

Automated GUI tests are more costly to create and maintain than unit or integration

tests. Here, 3 leverage points make automation more efficient and profitable:

1. You select a tool that extensively simplifies the GUI tests (more on this in the GUI

tests section: criteria for the tool selection)

2. You use the automated E2E test cases for functional tests, performance tests

and load tests

3. You continue to use the automated E2E test cases after the release goes live and

employ the most important business processes from the user’s viewpoint for

continuous E2E monitoring

“Shift-right” in this context means using the automated quality assurance beyond

the development phase throughout the rest of the application’s life cycle.

6) GUI tests: tool selection criteria
GUI tests are considered to be extremely costly to create and difficult to maintain.

Here, we list some problems that can typically occur during the GUI test automation

process – and how you can minimize them by selecting a suitable tool.

Simple and fast test creation and adaptation
Because GUI tests involve hundreds to thousands of test steps and have to be

adapted to new functionalities following implementation, there are two important

criteria for tool selection:

a) the procedure used to create the tests must be as simple as possible,

b) the tests must be quickly and selectively adaptable.

For simple test creation, we recommend no-code solutions that allow test cases

from predefined modules to be merged into one structured E2E workflow in a

graphic editor via drag & drop. Not only is this faster than scripts, it also allows remote

www.servicetrace.com 11/14

e-book | The Software Quality Guide

Notifications / pop-ups
Pop-ups that occur spontaneously, during updates of other applications integrated

into the workflow for example, can also affect the stability of GUI test automations.

You should therefore make sure when selecting your tool that the automation

Error tolerant: integrated error handling function

increases the stability of long E2E tests.

solution is able to intercept and handle such events in automated fashion.

Procedure for waiting times
The test system sometimes reacts more slowly than usual – and the automation

process has already run into an error. Your test automation solution should therefore

allow configurable waiting times for events in the workflow, e.g. until a browser

window opens and displays a certain content.

Dynamic web GUIs
With web applications in particular, GUI elements often change or are displayed

differently depending on the user settings. Processes that run on the user interface

directly, such as image or pattern searches, are not suitable in this case.

Your automation solution should therefore offer, especially for the automation of

dynamic web applications, other processes such as the control of HTML objects.

Divergent system settings
Resolution, color intensity or position of the elements displayed on the desktop may

vary, depending on the system settings on the end device.

To ensure your GUI tests are highly stable, the automation tool must behave robustly

toward divergent desktop settings.

Hardware and software resources
The test environment setup usually calls for additional hardware and software

licenses. You can slash costs if your automation tool allows parallel tests on one end

device.

Tool compatibility
Simple integratability into standard test management tools such as Jira or Jenkins

is advantageous.

Modularly and granularly structured graphic E2E workflows created via drag &

drop, however, can be systematically adapted only to the sequence affected by the

change to the GUI. If, for example, the icon for starting the application changes, only

the image recognition for this icon has to be reconfigured accordingly.

The option of managing elements that occur in multiple workflows in a central

repository simplifies and speeds up the process even further. Any adaptations

required on an element then need to be made just once centrally and rolled out on

all automation runs.

Error handling
Long E2E workflows usually consist of a sequence of aligned test cases. If one test

case in the workflow fails during execution, none of the subsequent steps can be

carried out and the test automation sticks at the last failed transaction. To ensure

that E2E workflows can be fully executed even in case of a sporadic error case, the

test automation tool should include a stable error handling function.

Servicetrace Test Automation handles

errors by means of managed blocks in the

automation workflow: the further behavior

of the automation solution in case of a failed

sequence is defined here. Any errors that

occur are documented with screenshot and

analytics package – and the next sequence in

the workflow is completed.

www.servicetrace.com 12/14

e-book | The Software Quality Guide

Agile development

Continuous integration

Continuous delivery

Continuous deployment

DevOps

7) Test automation and teamwork: new tasks and roles
If you are planning to introduce a test automation solution, you should assure your employees that they are not about to be replaced by automated processes. Test automation

cannot and will not completely replace manual testing. Its purpose is to take the pressure off testers, not make them redundant.

Therefore, you should clearly state from the outset that test automation handles those tedious, repetitive and boring tasks inherent in all software releases which push every

test team beyond their stress limit. Automation gives testers much more time for intellectually challenging, exploratory tests that better match their qualifications, lend their

work a new sense of purpose and hence increase their job satisfaction.

In addition, automation is opening the door to new fields of activity: for test automation engineers, for example, who dedicate themselves fully to the issue all of the time.

Testers who have performed tests manually to date could even consider a further qualification – either at the tool provider directly or through a certification at the ISTQB as

a “Certified Tester Expert Level –Test Automation”.

Automated quality gates in the DevOps pipe, from the software

development all the way through to the IT operations.

8) DevOps: continuous delivery, deployment, operation
Test automation is a key element of a comprehensive DevOps pipeline in which

a new software build clears various quality gates in automated fashion. The code

acceptance process takes place via automated unit tests, with JUnit for example.

Integrated modules are accepted using continuous integration tools, such as

Jenkins and completely implemented systems are accepted via GUI test tools, such

as Servicetrace Test Automation.

The next step in an efficiently automated DevOps pipeline is the automated

deployment of the releases that have successfully passed the previous automated

tests. Tools like Maven or Docker can then be used to load the new software version

into the live productive system at a defined time by an automated process.

The automated DevOps pipeline is rounded out by continuous E2E tests (end-to-

end monitoring) of business-critical click trails in the productive environment.

Code Build Integrate Test Release Deploy Operate

www.servicetrace.com 13/14

e-book | The Software Quality Guide

Sign up for Robotic News & stay up-to-date
www.servicetrace.com/de/robotic-news

From the field:
Customer stories about test automation

DSL and mobile radio provider 1&1 scales using software robots

“Without automation,

regular and

comprehensive regression tests

like these would not have

been possible.”

Andreas Förch | Head of Testing Unit

Change? Of course. Test Automation at Dekra SE

“This is really the only tool

that allows us to run

complex tests in all

applications.”

Katharina Hauch |

Test Factory Manager

Servicetrace:
No-code solution for automated GUI tests

Digital innovations occur in ever shorter intervals – frequently in the
break between agile sprints. You can reliably and cost-effectively
manage the huge test volume that arises here using Servicetrace test
automation.

Quality takes time – but when time is limited, quality must not be

allowed to suffer. For this reason, tester teams rely on Servicetrace Test

Automation whenever QA processes need to be accelerated during

software development. The solution is suitable for all applications without

exception (web / non-web).

Customers value the no-code approach of the solution. The test cases are

created and adjusted quickly and easily in the Workflow Studio using an

intuitive, graphical drag & drop method. This means that the users from

the functional departments can independently automate software tests.

Servicetrace Test Automation provides a comprehensive test suite in

which you can manage epics, stories and test cases. The test cases are

archived in an audit-compliant repository. Following execution of the

test, the test results with a detailed analysis package deliver convenient

feedback to development.

Do you manage your work in Jira? That’s perfect – Servicetrace Test

Automation can be fully integrated.

British Heart Foundation counts on performance tests

“The test automation solution

from Servicetrace fulfills

our exacting requirements

for volume and

transaction tests to perfection.”

Sarah Yates | Project Manager

www.servicetrace.com 14/14

e-book | The Software Quality Guide

https://www.servicetrace.com/robotic-news/
https://www.servicetrace.com/robotic-news/
https://www.servicetrace.com/blog/telecommunications-provider-11-scales-with-software-robots/
https://www.servicetrace.com/blog/change-no-problem-automated-regression-tests-at-dekra-se/
https://www.servicetrace.com/blog/british-heart-foundation-relies-on-servicetrace-for-performance-testing/

